Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134129, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565019

RESUMO

Butylparaben, a common endocrine disruptor in the environment, is known to be toxic to the reproductive system, heart, and intestines, but its nephrotoxicity has rarely been reported. In order to study the nephrotoxicity and mechanism of butylparaben, we examined the acute and chronic effects on human embryonic kidney cells (HEK293T) and zebrafish. Additionally, we assessed the potential remedial effects of salidroside against butylparaben-induced nephrotoxicity. Our in vitro findings demonstrated oxidative stress and cytotoxicity to HEK293T cells caused by butylparaben. In the zebrafish model, the concentration of butylparaben exposure ranged from 0.5 to 15 µM. An assortment of experimental techniques was employed, including the assessment of kidney tissue morphology using Hematoxylin-Eosin staining, kidney function analysis via fluorescent dextran injection, and gene expression studies related to kidney injury, development, and function. Additionally, butylparaben caused lipid peroxidation in the kidney, thereby damaging glomeruli and renal tubules, which resulted from the downregulation of the PI3K-AKT signaling pathway. Furthermore, salidroside ameliorated butylparaben-induced nephrotoxicity through the PI3K-AKT signaling pathway. This study reveals the seldom-reported kidney toxicity of butylparaben and the protective effect of salidroside against toxicological reactions related to nephrotoxicity. It offers valuable insights into the risks to kidney health posed by environmental toxins.


Assuntos
Rim , Parabenos , Transdução de Sinais , Peixe-Zebra , Animais , Humanos , Regulação para Baixo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Glucosídeos/farmacologia , Células HEK293 , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Parabenos/toxicidade , Fenóis/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38218563

RESUMO

Four tyrosine kinase inhibitors, alectinib, apatinib, lenvatinib and anlotinib, have been shown to be effective in the treatment of clinical tumors, but their cardiac risks have also raised concerns. In this study, zebrafish embryos at 6 h post fertilization (hpf) were exposed to the four drugs at concentrations of 0.05-0.2 mg/L until 72 hpf, and then the development of these embryos was quantified, including heart rate, body length, yolk sac area, pericardial area, distance between venous sinus and balloon arteriosus (SV-BA), separation of cardiac myocytes and endocardium, gene expression, vascular development and oxidative stress. At the same exposure concentrations, alectinib and apatinib had little effect on the cardiac development of zebrafish embryos, while lenvatinib and anlotinib could induce significant cardiotoxicity and developmental toxicity, including shortened of body length, delayed absorption of yolk sac, pericardial edema, prolonged SV-BA distance, separation of cardiomyocytes and endocardial cells, and downregulation of key genes for heart development. Heart rate decreased in all four drug treatment groups. In terms of vascular development, alectinib and apatinib did not inhibit the growth of embryonic intersegmental vessels (ISVs) and retinal vessels, while lenvatinib and anlotinib caused serious vascular toxicity, and the inhibition of anlotinib in vascular development was more obvious. Besides, the level of reactive oxygen species (ROS) in the lenvatinib and anlotinib treatment groups was significantly increased. Our results provide reference for comparing the cardiotoxicity of the four drugs.


Assuntos
Carbazóis , Cardiotoxicidade , Indóis , Compostos de Fenilureia , Piperidinas , Piridinas , Quinolinas , Peixe-Zebra , Animais , Cardiotoxicidade/metabolismo , Embrião não Mamífero
3.
J Environ Sci (China) ; 139: 460-472, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105069

RESUMO

As an increasingly used alternative to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been widely detected in global water environments. However, little is known regarding its toxic effects on cardiovascular development. Here, zebrafish embryos were treated with egg water containing 0, 60, 120, or 240 mg/L HFPO-TA. Results showed that HFPO-TA treatment led to a significant reduction in both larval survival percentage and heart rate. Furthermore, HFPO-TA exposure caused severe pericardial edema and elongation of the sinus venous to bulbus arteriosus distance (SV-BA) in Tg (myl7: GFP) transgenic larvae, disrupting the expression of genes involved in heart development and thus causing abnormal heart looping. Obvious sprouting angiogenesis was observed in the 120 and 240 mg/L exposed Tg (fli: GFP) transgenic larvae. HFPO-TA treatment also impacted the mRNA levels of genes involved in the vascular endothelial growth factor (VEGF) pathway and embryonic vascular development. HFPO-TA exposure significantly decreased erythrocyte number in Tg (gata1: DsRed) transgenic embryos and influenced gene expression associated with the heme metabolism pathway. HFPO-TA also induced oxidative stress and altered the transcriptional levels of genes related to cell cycle and apoptosis, inhibiting cell proliferation while promoting apoptosis. Therefore, HFPO-TA exposure may induce abnormal development of the cardiovascular and hematopoietic systems in zebrafish embryos, suggesting it may not be a suitable or safe alternative for PFOA.


Assuntos
Fluorocarbonos , Peixe-Zebra , Animais , Fator A de Crescimento do Endotélio Vascular/genética , Fluorocarbonos/toxicidade , Água
4.
Ecotoxicol Environ Saf ; 265: 115523, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37776822

RESUMO

Butylparaben (BuP) is a common antibacterial preservative utilized extensively in food, medical supplies, cosmetics, and personal care products. The current study reports the use of Zebrafish (Danio rerio) embryos to investigate potential developmental toxicity caused by exposure to BuP. The development of Neural crest cells (NCCs) is highly active during gastrulation in Zebrafish embryos. Thus, we utilized 0.5 mg/L, 0.75 mg/L, and 1 mg/L BuP solutions, respectively, in accordance with the international safety standard dosage. We observed severe craniofacial cartilage deformities, periocular edema, cardiac dysplasia, and delayed otolith development in the Zebrafish larvae 5 days after exposure. The oxidative stress response was significantly enhanced. In addition, the biochemical analysis revealed that the activities of catalase (CAT) and superoxide dismutase (SOD) were significantly reduced relative to the control group, whereas the concentration of malondialdehyde (MDA) was significantly elevated. Furthermore, ALP activity, a marker of osteoblast activity, was also reduced. Moreover, the RT-qPCR results indicated that the expression of chondrocyte marker genes sox9a, sox9b, and col2a1a was down-regulated. In addition, the morphology of maxillofacial chondrocytes was altered in Zebrafish larvae, and the proliferation of cranial NCCs was inhibited. Accordingly, our findings indicate that strong oxidative stress induced by BuP inhibits the proliferation of NCCs in larval Zebrafish, leading to craniofacial deformities.

5.
Environ Toxicol Chem ; 42(12): 2737-2746, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37712518

RESUMO

Flumioxazin is a widely applied herbicide for the control of broadleaf weeds, including aquatic plants. Current evidence suggests that flumioxazin could induce cardiac defects (ventricular septal defects) in vertebrates, but the underlining mechanisms remain unclear. Because of the inhibitory effect of flumioxazin on polyphenol oxidase, the assumption is made that flumioxazin-induced cardiotoxicity is caused by oxidative stress. To verify whether oxidative stress plays an important role in flumioxazin-induced cardiotoxicity, we compared the differences in heart phenotype, oxidative stress level, apoptosis, and gene expression between flumioxazin exposure and a normal environment, and we also tested whether cardiotoxicity could be rescued with astaxanthin. The results showed that flumioxazin induced both cardiac malformations and the abnormal gene expression associated with cardiac development. Cardiac malformations included pericardial edema, cardiac linearization, elongated heart, cardiomegaly, cardiac wall hypocellularity, myocardial cell atrophy with a granular appearance, and a significant gap between the myocardial intima and the adventitia. An increase in oxidative stress and apoptosis was observed in the cardiac region of zebrafish after exposure to flumioxazin. The antioxidant astaxanthin reversed the cardiac malformations, excessive production of reactive oxygen species (ROS), and expression of genes for cardiac developmental and apoptosis regulation induced by flumioxazin. In addition, flumioxazin also activated aryl hydrocarbon receptor (AhR) signaling pathway genes (aryl hydrocarbon receptor 2 [ahr2], cytochrome p450 family subfamily a [cyp1a1], and b [cyp1b1]) and increased the concentration of porphyrins. The results suggest that excessive ROS production, which could be mediated through AhR, led to apoptosis, contributing to the cardiotoxicity of flumioxazin in zebrafish embryos. Environ Toxicol Chem 2023;42:2737-2746. © 2023 SETAC.


Assuntos
Cardiotoxicidade , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Cardiotoxicidade/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Embrião não Mamífero
6.
Fish Shellfish Immunol ; 141: 109062, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37678480

RESUMO

Neuroinflammation is prevalent in multiple brain diseases and may also lead to dementia, cognitive impairment, and impaired spatial memory function associated with neurodegenerative diseases. A neuroprotective and antioxidant flavonoid, rutin hydrate (RH), was evaluated for the anti-neuroinflammatory activity mediated by copper sulfate (CuSO4) solution and lipopolysaccharide (LPS) in zebrafish. The results showed that 100 mg/L RH significantly reduced the ratio of neutrophil mobility in caudal hematopoietic tissue (CHT) region caused by CuSO4 and the number of neutrophils co-localized with facial peripheral nerves. In the LPS model, RH co-injection significantly diminished neutrophil and macrophage migration. Therefore, RH exhibited a significant rescue effect on both models. In addition, RH treatment remarkably reduced the effects of neuroinflammation on the locomotor ability, expression levels of genes associated with behavioral disorders, and acetylcholinesterase (AChE) activity. Furthermore, network pharmacology techniques were employed to investigate the potential mechanisms, and the associated genes and enzyme activities were validated in order to elucidate the underlying mechanisms. Network pharmacological analysis and zebrafish model indicated that RH regulated the expressions of NF-κB pathway-related targets (Toll-like receptor 9 (tlr9), nuclear factor kappa B subunit 1 (nfkb1), RELA proto-oncogene (RelA), nitric oxide synthase 2a, inducible (nos2a), tumour necrosis factor alpha-like (tnfα), interleukin 6 (il6), interleukin 1ß (il1ß), chemokine 8 (cxcl8), and macrophage migration inhibitory factor (mif)) as well as six key factors (arachidonic acid 4 alpha-lipoxygenase (alox4a), arachidonate 5-lipoxygenase a (alox5), prion protein a (prnpa), integrin, beta 2 (itgb2), catalase (CAT), and alkaline phosphatase (ALP) enzymes). Through this study, a thorough understanding of the mechanism underlying the therapeutic effects of RH in neuroinflammation has been achieved, thereby establishing a solid foundation for further research on the potential therapeutic applications of RH in neuroinflammatory disorders.


Assuntos
NF-kappa B , Peixe-Zebra , Animais , NF-kappa B/metabolismo , Peixe-Zebra/metabolismo , Doenças Neuroinflamatórias , Rutina/farmacologia , Rutina/metabolismo , Rutina/uso terapêutico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Acetilcolinesterase/metabolismo , Microglia , Fator de Necrose Tumoral alfa/metabolismo
7.
Environ Toxicol ; 38(11): 2679-2690, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37551640

RESUMO

Apatinib, a small-molecule VEGFR2-tyrosine kinase inhibitor, has shown potent anticancer activity in various clinical cancer treatments, but also different adverse reactions. Therefore, it is necessary to study its potential toxicity and working mechanism. We used zebrafish to investigate the effects of apatinib on the development of embryos. Zebrafish exposed to 2.5, 5, and 10 µM apatinib showed adverse effects such as decreased liver area, pericardial oedema, slow yolk absorption, bladder atrophy, and body length shortening. At the same time, it leads to abnormal liver tissue structure, liver function and related gene expression. Furthermore, after exposure to apatinib, oxidative stress levels were significantly elevated but liver developmental toxicity was effectively ameliorated with oxidative stress inhibitor treatment. Apatinib induces down-regulation of key target genes of Wnt signaling pathway in zebrafish, and it is found that Wnt activator can significantly rescue liver developmental defects. These results suggest that apatinib may induce zebrafish hepatotoxicity by inhibiting the Wnt signaling pathway and up-regulating oxidative stress, helping to strengthen our understanding of rational clinical application of apatinib.

8.
Fish Shellfish Immunol ; 141: 108977, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37579811

RESUMO

Nitazoxanide (NTZ) is a broad-spectrum immunomodulatory drug, and little information is about the immunotoxicity of aquatic organisms induced by NTZ. In the present study, reduced body length and decreased yolk sac absorption in the NTZ-treated group were observed. Meanwhile, the number of innate immune cells and adaptive immune cells was substantially reduced upon NTZ exposure, and the migration and retention of macrophages and neutrophils in the injured area were inhibited. Following NTZ stimulation, oxidative stress levels in the zebrafish increased obviously. Mechanistically, RNA-seq, a high-throughput method, was performed to analyze the global expression of differentially expressed genes (DEGs) in zebrafish embryos treated with NTZ. 531 DEGs were identified by comparative transcriptome analysis, including 121 up-regulated and 420 down-regulated genes in zebrafish embryos after NTZ exposure. The transcriptome sequences were further subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) and analysis, showing phototransduction and metabolic pathway, respectively, and were most enriched. In addition, some immune-related genes were inhibited after NTZ exposure. RNA-seq results confirmed by qRT-PCR were used to verify the expression of the 6 selected genes. The other immune-related genes such as two pro-inflammatory cytokines (IL-1ß, tnfα) and two chemokines (CXCL8b.3, CXCL-c1c) were further confirmed and were differentially regulated after NTZ exposure. In summary, NTZ exposure could lead to immunotoxicity and increased ROS in zebrafish embryos, this study provides valuable information for future elucidating the molecular mechanism of exogenous stimuli-induced immunotoxicity in aquatic ecosystems.


Assuntos
Ecossistema , Peixe-Zebra , Animais , Perfilação da Expressão Gênica , Macrófagos , Transcriptoma
9.
J Hazard Mater ; 459: 132175, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37517235

RESUMO

The increasing use of cosmetics has raised widespread concerns regarding their ingredients. Cysteamine hydrochloride (CSH) is a newly identified allergenic component in cosmetics, and therefore its potential toxicity needs further elucidation. Here, we investigated the in vivo toxicity of CSH during ocular development utilizing a zebrafish model. CSH exposure was linked to smaller eyes, increased vasculature of the fundus and decreased vessel diameter in zebrafish larvae. Moreover, CSH exposure accelerated the process of vascular sprouting and enhanced the proliferation of ocular vascular endothelial cells. Diminished behavior in response to visual stimuli and ocular structural damage in zebrafish larvae after CSH treatment were confirmed by analysis of the photo-visual motor response and pathological examination, respectively. Through transcriptional assays, transgenic fluorescence photography and molecular docking analysis, we determined that CSH inhibited Notch receptor transcription, leading to an aberrant proliferation of ocular vascular endothelial cells mediated by Vegf signaling activation. This process disrupted ocular homeostasis, and induced an inflammatory response with neutrophil accumulation, in addition to the generation of high levels of reactive oxygen species, which in turn promoted the occurrence of apoptotic cells in the eye and ultimately impaired ocular structure and visual function during zebrafish development.


Assuntos
Cisteamina , Peixe-Zebra , Animais , Cisteamina/toxicidade , Células Endoteliais , Simulação de Acoplamento Molecular , Inflamação/induzido quimicamente
10.
Aquat Toxicol ; 261: 106596, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290275

RESUMO

Dithiocarbamate (DTC) fungicides are contaminants that are ubiquitous in the environment. Exposure to DTC fungicides has been associated with a variety of teratogenic developmental effects. Propineb, a member of DTCs, was evaluated for the toxicological effects on notochord and craniofacial development, osteogenesis in zebrafish model. Embryos at 6 hours post-fertilization (hpf) were exposed to propineb at dosages of 1 and 4 µM. Morphological parameters were evaluated at exposure times of 24, 48, 72, and 120 hpf after propineb exposure. The survival and hatching rates as well as body length decreased at 1 and 4 µmol/L groups. Besides, transgenic zebrafish exposed to propineb showed abnormal vacuole biogenesis in notochord cells at the early stage of development. The expression of collagen type 2 alpha 1a (col2a1a), sonic hedgehog (shh), and heat shock protein family B member 11 (hspb11) measured by quantitative PCR and in situ hybridization experiment of col8a1a gene have consolidated the proposal process. Besides, Alcian blue, calcein, and alizarin red staining profiles displayed craniofacial malformations and osteoporosis were induced following propineb exposure. PPB exposure induced the changes in oxidative stress and reactive oxygen species inhibitor alleviated the deformities of PPB. Collectively, our data suggested that propineb exposure triggered bone abnormalities in different phenotypes of zebrafish. Therefore, propineb is a potential toxicant of high priority concern for aquatic organisms.


Assuntos
Fungicidas Industriais , Osteoporose , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Notocorda/anormalidades , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero
11.
Fish Shellfish Immunol ; 138: 108849, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37268155

RESUMO

Pexidartinib, a macrophage colony-stimulating factor receptor (CSF-1R) inhibitor, is indicated for the treatment of tendon sheath giant cell tumor (TGCT). However, few studies on the toxicity mechanisms of pexidartinib for embryonic development. In this study, the effects of pexidartinib on embryonic development and immunotoxicity in zebrafish were investigated. Zebrafish embryos at 6 h post fertilization (6 hpf) were exposed to 0, 0.5, 1.0, and 1.5 µM concentrations of pexidartinib, respectively. The results showed that different concentrations of pexidartinib induced the shorter body, decreased heart rate, reduced number of immune cells and increase of apoptotic cells. In addition, we also detected the expression of Wnt signaling pathway and inflammation-related genes, and found that these genes expression were significantly upregulated after pexidartinib treatment. To test the effects of embryonic development and immunotoxicity due to hyperactivation of Wnt signaling after pexidartinib treatment, we used IWR-1, Wnt inhibitor, for rescue. Results show that IWR-1 could not only rescue developmental defects and immune cell number, but also downregulate the high expression of Wnt signaling pathway and inflammation-related caused by pexidartinib. Collectively, our results suggest that pexidartinib induces the developmental toxicity and immunotoxicity in zebrafish embryos through hyperactivation of Wnt signaling, providing a certain reference for the new mechanisms of pexidartinib function.


Assuntos
Via de Sinalização Wnt , Peixe-Zebra , Animais , Peixe-Zebra/genética , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Inflamação/metabolismo , Embrião não Mamífero
12.
Toxicology ; 493: 153555, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236339

RESUMO

Cysteamine, a sulfhydryl compound, is an intermediate in the metabolism of coenzyme A to taurine in living organisms. However, the potential side effects of cysteamine such as hepatotoxicity in pediatric patients have been reported in some studies. To evaluate the impact of cysteamine on infants and children, larval zebrafish (a vertebrate model) were exposed to 0.18, 0.36 and 0.54 mM cysteamine from 72 hpf to 144 hpf. Alterations in general and pathological evaluation, biochemical parameters, cell proliferation, lipid metabolism factors, inflammatory factors and Wnt signaling pathway levels were examined. Increased liver area and lipid accumulation were observed in liver morphology, staining and histopathology in a dose-dependent manner with cysteamine exposure. In addition, the experimental cysteamine group exhibited higher alanine aminotransferase, aspartate aminotransferase, total triglyceride and total cholesterol levels than the control group. Meanwhile, the levels of lipogenesis-related factors ascended whereas lipid transport-related factors descended. Oxidative stress indicators such as reactive oxygen species, MDA and SOD were upregulated after cysteamine exposure. Afterwards, transcription assays revealed that biotinidase and Wnt pathway-related genes were upregulated in the exposed group, and inhibition of Wnt signaling partially rescued the abnormal liver development. The current study found that cysteamine-induced hepatotoxicity in larval zebrafish is due to inflammation and abnormal lipid metabolism, which is mediated by biotinidase (a potential pantetheinase isoenzyme) and Wnt signaling. This provides a perspective on the safety of cysteamine administration in children and identifies potential targets for protection against adverse reactions.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Transtornos do Metabolismo dos Lipídeos , Animais , Peixe-Zebra/metabolismo , Cisteamina/toxicidade , Cisteamina/metabolismo , Metabolismo dos Lipídeos , Biotinidase/metabolismo , Fígado , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/patologia , Estresse Oxidativo , Triglicerídeos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia
13.
Fish Shellfish Immunol ; 137: 108743, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062434

RESUMO

Sulfoxaflor is an insecticide that is widely used and affects the nervous system of sucking pests. However, studies on the molecular mechanism of the toxicity of sulfoxaflor to non-target species are limited. Zebrafish (Danio rerio) was used as an experimental subject in this study. Zebrafish embryos were exposed to 20, 25, and 30 mg/L sulfoxaflor solution to detect hatchability, mortality, heart rate, neutrophil count, oxidative stress, and expression of genes related to apoptosis and immune inflammation. The results showed that zebrafish embryos exposed to sulfoxaflor solution increased mortality and growth retardation, and the number of innate immune cells decreased significantly. In addition, the expression levels of apoptotic and proapoptotic genes increased significantly, and oxidative stress-related indexes changed significantly. Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway was further studied, and the interleukin 6 (IL-6), interleukin 1 beta (IL-1ß), cyclooxygenase-2 (COX2), tumor necrosis factor-alpha (TNF-α), TLR4, and myeloid differentiation primary response 88 (MYD88) gene expression levels were significantly up-regulated. We used small molecule inhibitor QNZ for the rescue experiment and detected the expression of relevant target proteins in the QNZ signaling pathway. QNZ reduced the expression of TLR4/NF-κB signaling pathway-related protein NF-κB p65 in the cytoplasm and nucleus and rescued the number of innate immune cells. In summary, sulfoxaflor may induce developmental toxicity and immunotoxicity in zebrafish by activating the TLR4/NF-κB signaling pathway, which provides a basis for further studies on the molecular mechanism of sulfoxaflor action in the aquatic ecosystem and the development and utilization of QNZ.


Assuntos
NF-kappa B , Peixe-Zebra , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Ecossistema , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo
14.
Fish Shellfish Immunol ; 135: 108672, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36893927

RESUMO

Exposure to environmental contaminants frequently induces the occurrence of blood diseases, but the underlying molecular mechanisms are scarcely known. The toxicity of Diflovidazin (DFD), a widely used mite-remover, to the blood system of non-target organisms requires urgent elucidation. To investigate the deleterious effects of DFD (2, 2.5, and 3 mg/L) on the development and survive of hematopoietic stem cells (HSCs), the zebrafish model was used in this study. DFD exposure reduced the number of HSCs and their subtypes, including macrophages, neutrophils, thymus T-cells, erythrocytes, and platelets. The significant changes in the abnormal apoptosis and differentiation of HSCs were the major reasons for the reduction in blood cells. Using small-molecule antagonists and p53 morpholino revealed that the NF-κB/p53 pathway was responsible for the apoptosis of HSCs upon DFD exposure. The restoration results attributed to the TLR4 inhibitor and molecular docking showed that the TLR4 protein, which was upstream of NF-κB signaling, played a vital role in DFD toxicology. This study elucidates the role and molecular mechanism of DFD in damaging zebrafish HSCs. It provides a theoretical basis for the occurrence of various blood diseases in zebrafish and other organisms.


Assuntos
NF-kappa B , Peixe-Zebra , Animais , NF-kappa B/metabolismo , Peixe-Zebra/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Receptor 4 Toll-Like , Simulação de Acoplamento Molecular , Células-Tronco Hematopoéticas
15.
Ecotoxicol Environ Saf ; 256: 114778, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36989556

RESUMO

Adriamycin (ADR), one of the most effective broad-spectrum antitumor chemotherapeutic agents in clinical practice, is used to treat solid tumors as well as hematological malignancies in adults and children. However, long-term ADR use causes several adverse reactions, including time- and dose-dependent cardiotoxicity, which limit its clinical application. In addition, the mechanism by which ADR induces cardiotoxicity remains unclear. Therefore, we used zebrafish as animal models to evaluate ADR toxicity during embryonic heart development owing to the similarity of this process in zebrafish to that in humans. Exposure of zebrafish embryos to 1.25, 2.5, and 5 mg/L ADR induced abnormal embryonic development, with the occurrence of cardiac malformations, pericardial edema, decreased movement speed and activity, and increased distance between the venous sinus and the arterial bulb (SV-BA). ADR exposure induced dysregulated cardiogenesis during the precardiac mesoderm formation period. We also observed irregular expression of cardiac-related genes, an upregulation of apoptotic gene expression, and a dose-dependent increase in oxidative stress levels. Furthermore, oxidative stress-induced apoptosis exerted deleterious effects on cardiac development in zebrafish embryos, and treatment with astaxanthin (ATX) alleviated these heart defects. ADR- and Wnt pathway-related genes exhibited good energy and spatial matching, and ADR upregulated the Wnt signaling pathway in zebrafish. Moreover, IWR-1 effectively alleviated ADR-induced heart defects. In conclusion, we demonstrated that the toxic effects of ADR on cardiac development in zebrafish embryos could provide a theoretical basis for explaining the pathogenesis of ADR-induced cardiotoxicity, which occurs through the upregulation of oxidative stress and Wnt signaling pathway, as well as its prevention and treatment in humans. These findings will help develop effective treatment strategies to combat ADR-induced cardiotoxicity and broaden the application of ADR for clinical practice.


Assuntos
Cardiotoxicidade , Cardiopatias Congênitas , Animais , Criança , Humanos , Cardiotoxicidade/metabolismo , Peixe-Zebra/metabolismo , Doxorrubicina/toxicidade , Simulação de Acoplamento Molecular , Coração , Estresse Oxidativo , Embrião não Mamífero
16.
Cells ; 11(20)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36291055

RESUMO

Shikonin is a naphthoquinone compound extracted from Chinese comfrey for treating cancer. However, there are few reports on its research on vertebrate tissue regeneration. Zebrafish is an ideal model for studying organ regeneration. In this study, we found that 3-dpf of zebrafish larvae exposed to shikonin at concentrations of 0.2, 0.3, and 0.4 mg/L showed increasingly inhibited regeneration of the tail fin. Immunohistochemical staining showed that shikonin exposure from 6 to 12 hpa increased the number of apoptotic cells in the caudal fin wound of larvae and decreased the number of proliferating cells. Shikonin exposure was found to up-regulate oxidative stress, increase ROS levels, and reduce neutrophil recruitment in the early stage of wound repair. Moreover, shikonin exposure caused disordered expression of fin regeneration blastemal-related genes. The use of astaxanthin to down-regulate oxidative stress was found to significantly reduce the inhibition of caudal fin regeneration. Mixed exposure of AMPK inhibitors or fullerenes (C60) with shikonin also showed the similar rescue effect. Collectively, our study showed that shikonin inhibited fin regeneration in zebrafish larvae by the upregulation of oxidative stress level and AMPK signaling pathway. This research provides valuable information on the mechanism of action of shikonin for its safe application.


Assuntos
Fulerenos , Naftoquinonas , Animais , Peixe-Zebra/genética , Larva , Fulerenos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Naftoquinonas/farmacologia
17.
Front Pharmacol ; 13: 966710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059963

RESUMO

Cysteamine is a kind of feed additive commonly used in agricultural production. It is also the only targeted agent for the treatment of cystinosis, and there are some side effects in clinical applications. However, the potential skeletal toxicity remains to be further elucidated. In this study, a zebrafish model was for the first time utilized to synthetically appraise the skeletal developmental defects induced by cysteamine. The embryos were treated with 0.35, 0.70, and 1.05 mM cysteamine from 6 h post fertilization (hpf) to 72 hpf. Substantial skeletal alterations were manifested as shortened body length, chondropenia, and abnormal somite development. The results of spontaneous tail coiling at 24 hpf and locomotion at 120 hpf revealed that cysteamine decreased behavioral abilities. Moreover, the level of oxidative stress in the skeleton ascended after cysteamine exposure. Transcriptional examination showed that cysteamine upregulated the expression of osteoclast-related genes but did not affect osteoblast-related genes expression. Additionally, cysteamine exposure caused the downregulation of the Notch signaling and activating of Notch signaling partially attenuated skeletal defects. Collectively, our study suggests that cysteamine leads to skeletal developmental defects and reduces locomotion activity. This hazard may be associated with cysteamine-mediated inhibition of the Notch signaling and disorganization of notochordal cells due to oxidative stress and apoptosis.

18.
Mol Neurobiol ; 59(11): 6652-6665, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35982279

RESUMO

Pamiparib is a poly ADP-ribose polymerase (PARP) inhibitor used in clinical studies, which can penetrate the blood-brain barrier efficiently. At present, there are few studies on its effect on vertebrate neurodevelopment. In this study, we exposed zebrafish embryos to 1, 2 and 3 µM of Pamiparib from 6 to 72 h post-fertilisation (hpf). Results showed that pamiparib can specifically induce cerebral haemorrhage, brain atrophy and movement disorders in fish larvae. In addition, pamiparib exposure leads to downregulation of acetylcholinesterase (AChE) and adenosine triphosphate (ATPase) activities, and upregulation of oxidative stress which then leads to apoptosis and disrupts the gene expression involved in the neurodevelopment, neurotransmitter pathways and Parkinson's disease (PD) like symptoms. Meanwhile, astaxanthin can partially rescue neurodevelopmental defects by downregulating oxidative stress. After exposure to pamiparib, the Notch signalling is downregulated, and the use of an activator of Notch signalling can partially rescue neurodevelopmental toxicity. Therefore, our research indicates that pamiparib may induce zebrafish neurotoxicity by downregulating Notch signalling and provides a reference for the potential neurotoxicity of pamiparib during embryonic development.


Assuntos
Embrião não Mamífero , Peixe-Zebra , Acetilcolinesterase/metabolismo , Adenosina Difosfato Ribose/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Hemorragia Cerebral/metabolismo , Embrião não Mamífero/metabolismo , Fluorenos , Larva , Estresse Oxidativo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Peixe-Zebra/metabolismo
19.
Chemosphere ; 305: 135453, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35752317

RESUMO

Zeolite imidazolate framework-8 (ZIF-8) is a nanomaterial of metal-organic frameworks (MOFs), which have various applications in drug delivery and water pollution remediation. However, little is known about its developmental neurotoxicity in aquatic organisms, especially on the low-level exposure. In the present study, we investigated the toxic effects of ZIF-8 NPs on the neuron development, behavioral traits, oxidative stress and gene expression in zebrafish embryos. Firstly, our results showed that ZIF-8 induced significantly embryonic malformations and abnormal development of nervous system in zebrafish embryos with a concentration-dependent manner. Meanwhile, the locomotor behavior was obviously inhibited while the anxiety behavior was greatly increased after ZIF-8 exposure. Secondly, the levels of ROS and antioxidant enzyme activities (CAT, SOD and MDA) together with AChE and ATPase were substantially increased in the ZIF-8 exposed groups. At the molecular level, ZIF-8 NPs could down-regulate the expression profiles of neural development-related genes (gap43, synapsin 2a and neurogenin 1) and PD-like related genes (dj-1, dynactin and parkin), but up-regulate the expression levels of neuro-inflammatory genes (nox-1, glip1a and glip1b) in larval zebrafish. In addition, we further explored the molecular mechanism of neurotoxicity induced by ZIF-8 with pharmacological experiments. The results showed that specific inhibition of ROS-mediated oxidative stress by the astaxanthin could reverse the expression patterns of ATPase, AChE and neurodevelopmental genes. Moreover, astaxanthin can partially rescue the ZIF-8-modulated locomotor behavior. Taken together, our results demonstrated that ZIF-8 had the potential to cause neurotoxicity in zebrafish embryos. These informations presented in this study will help to elucidate the molecular mechanisms of ZIF-8 nanoparticles exposure in zebrafish, which providing a scientific evaluation of its safety to aquatic ecosystems.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Zeolitas , Adenosina Trifosfatases/metabolismo , Animais , Antioxidantes/metabolismo , Ecossistema , Embrião não Mamífero , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo , Zeolitas/toxicidade
20.
Environ Toxicol ; 37(6): 1310-1320, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35119177

RESUMO

Due to an increasing number of abused drugs dumped into the wastewater, more and more drugs are detected in the water environment, which may affect the survival of aquatic organisms. Lenvatinib is a multi-targeted tyrosine kinase inhibitor, and is clinically used to treat differentiated thyroid cancer, renal epithelial cell carcinoma and liver cancer. However, there are few reports on the effects of lenvatinib in embryos development. In this study, zebrafish embryos were used to evaluate the effect of lenvatinib on cardiovascular development. Well-developed zebrafish embryos were selected at 6 h post fertilization (hpf) and exposed to 0.05 mg/L, 0.1 mg/L and 0.2 mg/L lenvatinib up to 72 hpf. The processed embryos demonstrated cardiac edema, decreased heart rate, prolonged SV-BA distance, inhibited angiogenesis, and blocked blood circulation. Lenvatinib caused cardiac defects in the whole stage of cardiac development and increased the apoptosis of cardiomyocyte. Oxidative stress in the processed embryos was accumulated and inhibiting oxidative stress could rescue cardiac defects induced by lenvatinib. Additionally, we found that lenvatinib downregulated Notch signaling, and the activation of Notch signaling could rescue cardiac developmental defects and downregulate oxidative stress level induced by lenvatinib. Our results suggested that lenvatinib might induce cardiac developmental toxicity through inducing Notch mediated-oxidative stress generation, raising concerns about the harm of exposure to lenvatinib in aquatic organisms.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Cardiotoxicidade/metabolismo , Embrião não Mamífero , Estresse Oxidativo , Compostos de Fenilureia/toxicidade , Quinolinas , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA